TSA: Tree-seed algorithm for continuous optimization
نویسنده
چکیده
This paper presents a new intelligent optimizer based on the relation between trees and their seeds for continuous optimization. The new method is in the field of heuristic and population-based search. The location of trees and seeds on n-dimensional search space corresponds with the possible solution of an optimization problem. One or more seeds are produced from the trees and the better seed locations are replaced with the locations of trees. While the new locations for seeds are produced, either the best solution or another tree location is considered with the tree location. This consideration is performed by using a control parameter named as search tendency (ST), and this process is executed for a pre-defined number of iterations. These mechanisms provide to balance exploitation and exploration capabilities of the proposed approach. In the experimental studies, the effects of control parameters on the performance of the method are firstly examined on 5 well-known basic numeric functions. The performance of the proposed method is also investigated on the 24 benchmark functions with 2, 3, 4, 5 dimensions and multilevel thresholding problems. The obtained results are also compared with the results of state-of-art methods such as artificial bee colony (ABC) algorithm, particle swarm optimization (PSO), harmony search (HS) algorithm, firefly algorithm (FA) and the bat algorithm (BA). Experimental results show that the proposed method named as TSA is better than the state-of-art methods in most cases on numeric function optimization and is an alternative optimization method for solving multilevel thresholding problem. 2015 Elsevier Ltd. All rights reserved.
منابع مشابه
A New Algorithm for Optimization of Fuzzy Decision Tree in Data Mining
Decision-tree algorithms provide one of the most popular methodologies for symbolic knowledge acquisition. The resulting knowledge, a symbolic decision tree along with a simple inference mechanism, has been praised for comprehensibility. The most comprehensible decision trees have been designed for perfect symbolic data. Classical crisp decision trees (DT) are widely applied to classification t...
متن کاملDISCRETE AND CONTINUOUS SIZING OPTIMIZATION OF LARGE-SCALE TRUSS STRUCTURES USING DE-MEDT ALGORITHM
Design optimization of structures with discrete and continuous search spaces is a complex optimization problem with lots of local optima. Metaheuristic optimization algorithms, due to not requiring gradient information of the objective function, are efficient tools for solving these problems at a reasonable computational time. In this paper, the Doppler Effect-Mean Euclidian Distance Threshold ...
متن کاملDISCRETE SIZE AND DISCRETE-CONTINUOUS CONFIGURATION OPTIMIZATION METHODS FOR TRUSS STRUCTURES USING THE HARMONY SEARCH ALGORITHM
Many methods have been developed for structural size and configuration optimization in which cross-sectional areas are usually assumed to be continuous. In most practical structural engineering design problems, however, the design variables are discrete. This paper proposes two efficient structural optimization methods based on the harmony search (HS) heuristic algorithm that treat both discret...
متن کاملAn Improved Bat Algorithm with Grey Wolf Optimizer for Solving Continuous Optimization Problems
Metaheuristic algorithms are used to solve NP-hard optimization problems. These algorithms have two main components, i.e. exploration and exploitation, and try to strike a balance between exploration and exploitation to achieve the best possible near-optimal solution. The bat algorithm is one of the metaheuristic algorithms with poor exploration and exploitation. In this paper, exploration and ...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Expert Syst. Appl.
دوره 42 شماره
صفحات -
تاریخ انتشار 2015